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We numerically study the dynamics of the SIR disease model on small-world networks by using
a large-deviation approach. This allowed us to obtain the probability density function of the total
fraction of infected nodes and of the maximum fraction of simultaneously infected nodes down to
very small probability densities like 10−2500. We analyzed the structure of the disease dynamics
and observed three regimes in all probability density functions, which correspond to quick mild,
quick extremely severe and sustained severe dynamical evolutions, respectively. Furthermore, we
investigated the mathematical rate functions of the densities. The results indicate that the so called
large-deviation property holds for the SIR model. Finally, we measured correlations with other
measurable quantities like the duration of an outbreak or the position of the peak of the fraction of
infections, also in the rare regions which are not accessible by standard simulation techniques.

I. INTRODUCTION

The modeling of the spread of epidemic diseases has
always been a central aspect in statistics, applied mathe-
matics and statistical mechanics [1–5]. Due to the present
outbreak of the corona virus pandemic, interest in this
field has risen even more [6–12]. Disease spreading can be
modeled in many different ways, e.g, with ordinary dif-
ferential equations like in the mean-field version of the
susceptible-infected-recovered (SIR) model [13] or with
agent-based approaches [14, 15]. Also other fields are
involved, like Bayesian analysis [16] to estimate model
parameters [6, 9] or machine-learning approaches [17] to
predict the future development of an outbreak [10, 18–
20].

Given the large population of humans and animals on
our planet and given the high number of active and po-
tential threatening viruses or bacteria, the actual num-
ber of pandemic diseases is surprisingly small. Thus, the
outbreak of a specific pandemic is actually a rare event,
i.e., occurs, looking at each single type of disease, with
a very small probability. For example, the disease might
be very active in one population of, e.g., bats, but much
rarer contacts or rare mutations are needed to allow the
transfer to another population, like humans, maybe even
requiring unknown intermediate animals. Hence, it is
natural to consider the application of large-deviation ap-
proaches to study disease dynamics. This has been done
so far only few times, e.g., the large-deviation princi-
ple was investigated analytically [21], generalizing an ap-
proach of Ref. [22], for simple mean-field epidemic mod-
els.

A more realistic modeling of epidemic dynamics be-
yond mean-field level is in general obtained when study-
ing the dynamics on networks [3]. These networks rep-
resent the contacts between the individuals or groups of
individuals. Depending on the structure of a network
and on the epidemic parameters like transmission proba-
bility and recovering probability, the infection of a single
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node might stay contained or might lead to a pandemic
outbreak. The critical value of, e.g., the transmission
probability, beyond which an pandemic outbreak occurs,
i.e., a percolation of the infected nodes, is called the epi-
demic threshold. For not too complex models, the epi-
demic threshold of disease models can be analyzed by
using a variety of analytical methods, e.g., the mean-
field method, its quenched version, or dynamic message
passing approaches. [23–29]. Naturally, for more com-
plex models it is even harder to obtain analytical results,
thus often computer simulation [30] are applied.

To our knowledge, for the study of disease spreading on
networks with respect to large-deviations and rare events
no results are available, let it be analytical or numerical.
Thus, to start to establish such approaches in the field
of disease dynamics, here we consider the simple case
of the SIR model on standard networks drawn from a
small-world [31] ensemble. This is motivated by the fact
that physical contact networks between humans resem-
ble small-world-like networks [14]. However the methods
applied here can be used for all types of networks. We
apply large-deviation techniques [32–34] which are based
on Markov-chain approaches as Wang Landau [35] and
entropic sampling [36]. In this way were able to explore
the probability density function (pdf) of the fraction of
infected nodes down to probability densities as small as
10−115. For the pdf of the maximum of the fraction of
simultaneously infected nodes we reached values as small
as 10−2500. For both quantities, we looked at the re-
spective mathematical rate functions, to verify whether
the large-deviation principle holds [37–40]. This gives a
complete description of these stochastic quantities, over
the full range of the support of the distributions. First,
this is desirable from a fundamental research point of
view. Second, we are able to investigate correlations be-
tween different quantities, e.g., how the fraction of in-
fected nodes corresponds to how quickly the disease dies
out. Since we are using a large-deviation technique, we
are able to study these correlations much beyond the typ-
ical behavior. Thus, we can also analyze extremely severe
as well as extremely mild disease progression, and try
to identify their possible causes through looking at their
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correlations. The much broader understanding gained in
this way could be one piece to help to better prevent
pandemic outbreaks in the future, in particular if it is
applied not to the general model but for a specific case
tailored to the epidemic under scrutiny, respectively.

The paper is organized as follows: First, we introduce
the SIR model, define its dynamics and the main mea-
surable quantities. Next, we define the ensemble of net-
works we use. In the main methodological section, we
present the algorithms used for sampling the rare events
and how we have to set up the simulation of the SIR dy-
namics to embed it into the large-deviation scheme. Our
results come in three parts. We begin by investigating
the ensemble with standard techniques to identify inter-
esting points in parameter space. For these points we
performed large-deviation simulations to obtain the dis-
tributions of the total fraction C of infected individuals
and of the maximum fraction M of simultaneously in-
fected individuals, respectively. We finish by a summary
and outlook.

II. SIR MODEL

Let be given a connected network with N nodes, where
the nodes represent individuals and the edges contacts.
The term connected here means that there is only one
connected component, i.e., all nodes can be reached from
each other through paths along edges. Each node is in
one of the three states susceptible (S), infected (I) or
recovered (R).

For any given configuration of states in the network,
at each time step a node can change its state as follows.
The probability of an infected node infecting a specific
susceptible neighbor is given by the transmission prob-
ability λ = const. The probability of an infected node
recovering in a given time step is given by µ = const. A
node in the recovered state remains always recovered.

We consider a node i in S state, which has Ai adjacent
infected nodes. Since each infected neighbor has a prob-
ability of λ to infect node i, the probability for node i to
become infected in a time step is

λi = 1− (1− λ)
Ai . (1)

All possible transitions the states of a node are shown in
Fig. 1.

IS Rλi µ

1− λi 1− µ 1

FIG. 1. Showing transition probabilities for node i at a given
time step

For all disease dynamics we consider, as initial state at
discrete time t = 0 one particular node (in the following
called node 0) being set to the infected state, while all

other nodes are susceptible. Our simulations [30] of dis-
ease dynamics are performed at discrete times τ → τ + 1
by applying the above mentioned rules in a parallel fash-
ion to all nodes. This is repeated until the disease dies
out, i.e., no infected nodes remain, or if a maximum cho-
sen time is reached. Such a development we call the time
evolution of an outbreak from here on. Note that the
outbreak might be very small, with just node 0 being
initially infected and recovering after some time, before
any other node is infected. Clearly, unless λ � µ, this
will not occur too often.

An outbreak simulation can be done multiple times,
and will generally lead to different results, due to the
probabilistic nature of the problem.

To describe the time evolution of an outbreak, let us
introduce a few quantities. Let s(τ), i(τ) and r(τ) be
the fraction of susceptible, infected and recovered nodes
at time step τ respectively. Let c(τ) = i(τ) + r(τ) be
the fraction of the total, i.e., cumulative infections which
have occurred up to time step τ . These quantities depend
on the time step. To describe globally the characteristics
of an outbreak, we use the two following quantities.

C = max
τ

(c(τ)) ≡ c(∞) (2)

describes the the fraction of the network that caught the
disease during the outbreak and is therefore a measure for
its severity. This is the standard quantity to distinguish
between a local outbreak and a pandemic.

M = max
τ

(i(τ)) (3)

denotes the peak fraction of nodes which happened to be
simultaneously in the infected state during an outbreak
and is therefore a relevant quantity for the health care
system.

III. ENSEMBLE

In our work, we investigated a small-world network en-
semble [31, 41–43], because contact networks between in-
dividuals are highly connected small-world-like networks
[14]. We used the same implementation as we used in
Ref. [44].

The network is constructed as follows. Let there be N
nodes i = 0, . . . , N − 1. First, the nodes are arranged in
a ring structure, meaning every node is connected to its
next and second next neighbor by the edges {i, i+1} and
{i, i + 2} (nodes N and N + 1 are identified as 0 and 1
respectively).

To gain small-world characteristics, next some of the
edges created in the first step are made long-range, i.e.,
each of those edge will be rewired with probability p. To
rewire an edge {i, j}, with j = i+1 or j = i+2, a random
node j′ 6= i is drawn and the edge is changed to {i, j′}.
We used p = 0.1 throughout this paper.

As mentioned, we only considered connected networks,
i.e., networks where there exists a path of edges between



3

any two nodes. We used depth first search to verify,
whether any created network was connected or not. If
the network was not connected, the whole network was
discarded and the construction process repeated, until a
connected network was generated.

IV. ALGORITHMS

The straight-forward way to perform the outbreak sim-
ulations outlined in Sec. II, often called simple sampling,
is to start with the initial state and while performing
the iterations draw the necessary random numbers inde-
pendently “on demand”. This will generate typical out-
breaks, i.e., when performing K independent runs, one
can efficiently sample events which occur with probabil-
ities not smaller than O(1/K).

We are interested in the large-deviation properties of
the outbreaks, i.e., we want to access events which occur
with much smaller probabilities. To achieve this, we have
to control the dynamics of the outbreaks. This works by
biasing them in a suitable way within a Markov chain
Monte Carlo (MCMC) simulation [34], as explained in
Sec. IV B. But in order to use the outbreak simulation as
the basic element within an MCMC simulation, we have
to make it accessible for control, as explained in the next
section.

All large-deviation simulations are for a fixed given
network. As you will see below, we average only over few
networks, or, for large number N of nodes, we consider
only one given network due to assumed self-averaging.
Thus, we are not interested in rare properties induced
by rare network structures. This is justified, because the
contact network of a population of individuals is usually
given, and often there is only one or few contact networks.
Thus, what we are interested in are typical and rare dy-
namical processes taking place on typical networks.

A. Outbreak simulation

To analyze this model with large-deviation methods
down to very small probabilities, we need a way to ma-
nipulate the spread of disease in a controlled fashion.

We therefore need to be able to manipulate the random
numbers drawn in the simulation. An easy way to achieve
this, is to draw the random numbers beforehand, store
them in one or several vectors [34, 45] and pick numbers
from the vector whenever needed. That means, we need
to make an educated guess about how many time steps
tmax are needed for the simulation in order to make the
vectors large enough. Clearly, the choice of tmax will
depend on the values of λ and µ, and will be determined
below.

Now, the random numbers to be drawn beforehand
are contained in two arrays ξλ[l] and ξµ[l] with l =
0, 1, . . . tmaxN . The entries shall be drawn uniformly be-
tween 0 and 1 each. The MCMC approach will manip-

ulate these two vectors in order to control the outbreak
simulation. The basic assumption used in the MCMC ap-
proach is that the state of a system, here the outbreak,
changes only slightly, if the random numbers are changed
only slightly. For this purpose each random number will
be assigned a specific purpose or use. This implies, as
you will see, that any random number will occasionally
be ignored.

We detail now the use of the random numbers in one
outbreak simulation. Let τ ≥ 0 be the current time step.
To calculate the states of the nodes for the next iteration,
we first iterate over all susceptible nodes i, that have at
least one infected neighbor. The probability for i to be
infected is λi as shown in Eq. (1). To decide whether the
node should be flagged for becoming infected at time τ+1
we use the the random number ξλ[τN + i], i.e., it will be
flagged infected if ξλ[τN + i] < λi Note that for all nodes
i which have no infected neighbors, the corresponding
entries of ξλ are ignored.

Next, we iterate over all infected nodes i. We use the
random number stored at ξµ[τN + i], to flag the state
of node i to be recovered in the next time step, which
occurs with probability µ.

Note that, technically, one could store all needed ran-
dom numbers from ξλ and ξµ in one single array. We
found this splitting more convenient, in particular be-
cause it allows easily for manipulating the arrays in dif-
ferent ways.

Note that the actual outbreak, which starts here
always with only node 0 being infected, involves no
other randomness except that present in the two vec-
tors of random numbers. Thus, the dynamic evolution
and any measurable quantity are deterministic functions
f(ξλ, ξµ).

B. Large-deviation Sampling

Our goal is to calculate the probability density function
(pdf) P (E) for a given network G and given values of λ
and µ. Here E stands for a measurable quantity of the
spread of disease, in our case either C or M . In the
following E will be referred to as energy.

To calculate the pdf over a large range of the support,
possible over its full support, one usually must be able to
obtain it also in the region of very small probability den-
sities. To achieve this within numerical simulations [30],
specific large-deviation algorithms [32] can be applied.
Such approaches have been used to study various equilib-
rium and non-equilibrium problems like alignment scores
of protein sequences [33, 46, 47], nucleation [48], proper-
ties of random networks [49–51], dynamics of the totally
asymmetric exclusion process [52, 53], traffic models [54],
calculation of partition functions [55], dynamics of model
glasses [56], dynamics of Ising ferromagnets [34, 57] and
statistics of negative-weight percolation [58].

Various large-deviation algorithms exist. Here, we ap-
plied an approach based on the Wang-Landau (WL) algo-
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rithm [35]. Although the general approach is well known,
we present the main steps along with those necessary de-
tails here, which are needed to reproduce our results.

The algorithm starts with a non-normalized estimate
g(E) of the density of states for the energy E. In case one
does not have any prior information, like here, one starts
with an unbiased estimate g(E) = 1 ∀E. The algorithm
will iteratively refine g(E) to converge closely to the true
pdf. This is achieved by creating a Markov chain in the
space of all possible outbreaks for a given network and
given initial state S, I or R of each node. Since, as shown
in the previous section, each outbreak has a one-to-one
correspondence to the two arrays ξλ and ξµ, the Markov
chain is actually performed in the space of all possible as-
signments of random number entries from [0, 1] to these
two arrays. We denote by (ξnλ , ξ

n
µ) the current config-

uration at Markov step n. For each of such a configu-
ration, a full outbreak simulation has to be performed
and the energy, i.e., the cumulative or peak fraction of
infections, can be read off. Thus, as mentioned, this en-
ergy is just a deterministic function of the configuration:
En = E

(
ξnλ , ξ

n
µ

)
.

To perform the Markov chain we used in particular
the Metropolis-Hastings MCMC method [59–61]. There-
fore, each step in the Markov chain consist of generating
a trial configuration (ξ̃λ, ξ̃µ) from the current configura-
tion, which will be accepted or rejected, as detailed more
below.

First, we explain how the trial configurations are gen-
erated here. We use a combination of three different pos-
sible moves, which are all based on the current configu-
ration, i.e., we start with (ξ̃λ, ξ̃µ) = (ξnλ , ξ

n
µ). One of the

three following change operations is randomly selected:
With a high probability of 98%, we just perform ran-

dom changes as follows: We randomly choose one of the
two arrays ξ̃ ∈ {ξ̃λ, ξ̃µ}, draw a random index k and a
random number χ ∈ [0, 1] uniformly and set ξ[k] = χ.
This is repeated B times. As a rule of thumb, B should
be chosen such that about 50% of the trial configurations
are accepted, which is what we aimed at. For the actual
numbers see the results section. Note, that the correct-
ness of the method does not depend on the acceptance
rate, however it does affect efficiency. It is clear, that this
move alone is able to reach all possible configurations of
(ξλ, ξµ), which means that ergodicity is fulfilled. Never-
theless, for a better convergence, we include two more
moves:

With a probability of 1% we perform a rotation, i.e., we
rotate ξ̃λ and ξ̃µ by N elements to the left or to the right,
with periodic boundaries. This roughly corresponds to
shifting the resulting time series of the outbreak by one
time step to the left or right.

Also with a 1% probability we perform a swap. Here,
we draw two random indices ι and ν and swap the values
ξλ[ι]↔ ξλ[ν] and ξµ[ι]↔ ξµ[ν]. This is repeated B times
to create one trial configuration.

Note that these moves to obtain trial configurations do
not skew the probability of the resulting random-number

vectors in any direction, since all entries are always uni-
formly drawn in [0, 1].

For the trial configuration of random numbers again
a complete outbreak simulation has to be performed, re-
sulting in the corresponding energy Ẽ = E(ξ̃λ, ξ̃µ).

The trial configuration will now be accepted, i.e.,
(ξn+1
λ , ξn+1

µ ) = (ξ̃λ,= ξ̃µ) and therefore En+1 = Ẽ, with
a Metropolis-Hastings probability

pacc = min

(
1,
g(En)

g(Ẽ)

)
. (4)

If the trial configuration is rejected, the current configu-
ration is kept, i.e., (ξn+1

λ , ξn+1
µ ) = (ξnλ , ξ

n
µ) and therefore

En+1 = En.
As usual for the WL algorithm, next the density esti-

mate g is updated using a multiplicative factor f > 1,
i.e., g (En+1) → fg (En+1), while for all other values of
E, g(E) remains the same. One can start with a rather
large factor like f = e ≈ 2.71. The factor is then reduced
towards 1 during the simulation.

However the saturation of the final error becomes a
problem for the original WL algorithm ([62], see also
Refs. [63–65]). The algorithm introduced by Belardinelli
and Pereyra [63] is used to circumvent the problem, since
it was shown [65], that error saturation does not become
a problem for this alternative algorithm. The main dif-
ference between this algorithm and the original WL is in
how the factor f is updated during the simulation, for
details see the citations.

Still, the WL algorithm and its variants do not fulfill
detailed balance. Therefore we perform entropic sam-
pling [36] afterwards. We start with the estimate g(E)
as computed by WL. Entropic sampling is very similar to
WL. We use the same method to generate a Markov chain
and accept the states based on the probability Eq. (4).
This time, however, we do not update g, but instead
maintain a histogram H(E) of visited states. We al-
ways employed entropic sampling for the same number
of steps, as we had used for the preceding Wang-Landau
runs, respectively.

To finish the entropic sampling simulation, the wanted
pdf can be calculated. First, a non-normalized pdf is
calculated

P̃ (E) = g(E)H(E) (5)

for all bins, where H(E) > 0. For all other bins the pdf
would be unknown. Then the pdf is normalized

P (E) =
P̃ (E)∫

Ê
P̃ (Ê)dÊ

. (6)

During the simulation using the entropic sampling, we
occasionally sample, i.e. store trajectories of outbreaks,
which can be analyzed later on. This will lead to a rather
uniform sampling of the trajectories with respect to the
measured energy, C or M .

Calculating the pdf over the whole regime at once can
be rather challenging. To make it more feasible, we split
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the E range in multiple overlapping intervals [66, 67].
For each of those intervals we performed a WL and an
entropic sampling simulation. Finally the resulting pdf
can be merged to obtain a full pdf. This can be done, be-
cause the pdfs of the overlapping regions have to match,
at least within statistical fluctuations [33, 35].

For some of these overlapping intervals we had prob-
lems with the ergodicity, which can be observed if not
the full interval is visited, or if the distribution from
neighboring intervals does not match well. To circumvent
the problem, we used a replica exchange Wang-Landau
(REWL) algorithm [68–70] for the affected pdfs, which
works similar to the Wang-Landau algorithm described
above, but regularly attempts to exchange configurations
between independent simulations on different intervals,
utilizing a suitable Metropolis criterion. Again, we refer
to the literature for details. Note that we also applied
the replica exchange approach to the entropic sampling
to obtain the finale pdf estimates.

V. SIMPLE SAMPLING SIMULATIONS

To choose points of interest in parameter space and
a suitable length tmax of the outbreak simulations, we
have performed some test simulations prior to the large-
deviation simulations.

A. Critical transmission probability

We want to analyze the behavior of the model in the
non-pandemic phase, in the pandemic phase, and close to
the epidemic threshold. Since we work in discrete time,
the parameters are not rates but probabilities. Thus,
unlike to the continuous time case, there is no natural
or neutral time scale, and we we cannot set one of the
probabilities to 1. We chose, somehow “in the middle”
µ = 0.14 as the recovery probability for all our simula-
tions. Clearly, the general results will not depend much
on the value of µ, unless it approaches 0 or 1. Thus,
the task was to determine the critical transmission prob-
ability λc where the epidemic threshold is located. For
this purpose we generated for various network sizes up
to N = 3200 each time 200000 randomly generated net-
works and performed outbreak simulations for each net-
work. Initially, only node 0 was infected while all other
nodes were susceptible. Here, all outbreaks were iterated
until no infected node remained. We measured the aver-
age cumulative fraction C(λ) of infected nodes. We also
calculated the variance σ(C) for each combination N,λ.
Errors were estimated with bootstrap resampling [71].
For different number N of nodes the curves C(λ) change
so little, that it would be hardly visible we therefore only
show an example of this in Fig. 2.

We define the finite-size critical transmission λc(N) as
the peak of the variance σ(C,N). To measure the peak
of the critical transmission, we fitted Gaussians around

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.00

0.05

0.10

0.15

0 0.2 0.4

C

λ

C

σ

λ

σ(C)

FIG. 2. Example for the average C as a function of the trans-
mission probability λ for N = 800 and µ = 0.14. The inset
shows the variance. Error bars are smaller than symbol sizes.

the maxima, respectively. We then applied standard
finite-size scaling to calculate the critical transmission
rate λc(∞) by fitting

λc(N) = λc(∞) + aN−b (7)

to the data, as shown in Fig. 3.

0.176

0.177

0.178

0.179

0.180

0 1200 2400 3600

λ

N

λc

FIG. 3. Critical transmission λc for µ = 0.14 as a function of
the number N of nodes with fit to λc(N) from Eq. (7).

We obtained a value λc(∞) = 0.1763(2) for the critical
transmission. The other fit parameter were a = 0.24(24)
and b = 0.91(21), with rather large error bars, but these
values are not of interest here. Note that fitting λc(N) =
λc(∞) + a2 log(N)b2 looks very similar and leads to a
similar critical transmission λc(∞) = 0.1750(4).

B. Disease duration

For the large-deviation simulation we cannot simply
run each outbreak simulation until the disease dies out,
because the MCMC scheme operates with a vector of
random numbers which must be of fixed length. Thus,
we have to find a suitable time scale for the duration of
the outbreak simulations.
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For this purpose we performed simulations in the same
manner as described in the previous section and mea-
sured the duration ∆t it takes until no infected nodes
remain, i.e., i(∆t) = 0, for each simulation. After this
time, the state of the nodes will not change, the outbreak
dynamics is finished. For each parameter set (N,λ) we
measured 100000 randomly generated networks.

For each considered parameter set (N,λ) we then cal-
culated the value ∆t90 which describes how how long it
takes until 90% of the outbreak dynamics were finished.
The measured curves are shown in Fig. 4. Interestingly,
the outbreak takes longest well below the critical values
λc.
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0.05 0.1 0.15 0.2 0.25

N = 9600

N = 200

∆
t 9

0

λ

FIG. 4. The duration ∆t90 until the outbreaks are com-
pletely finished for 90% of the independent outbreak sim-
ulations as a function of λ, for different system sizes N .
The largest and smallest value of N are labeled. In be-
tween the values behave monotonously. The used values are
N ∈ {200, 600, 1200, 4800, 9600}.

To investigate the worst case scenario we look at

∆tmax
90 (N) := max

λ
[∆t90(N,λ)] . (8)

The results can be found in Fig. 5. We used these result
to set up the length of the outbreak simulations within
the large-deviation appoach, see below. But beyond this
technical aspect, it is also interesting to investigate the
scaling behavior. For this purpose, we also fitted the
function

f(N) = a+ bN c (9)

to the ∆tmax
90 (N) data, which seems to describe the re-

lation very well. The fit parameter were a = −50(4),
b = 36(2) and c = 0.2824(43). That means that the time
it takes until 90% of the outbreaks are over scales roughly
with the 4th root of the system size.

It is also interesting to look at the duration right at the
critical transmission. This can be found in Fig. 6. Here
we set a = 0 for the fit because the errors were becoming
unreasonably large otherwise. The obtained parameters
from the fit are b = 51(3) and c = 0.1555(8), which means
that here the duration scales roughly only with the 7th
root of the system size.
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f(N)

FIG. 5. Maximum ∆tmax
90 over all values of λ of how long it

takes until 90% of outbreaks are finished, as a function of N .
The line shows the fit to f(N).

Note that usually a power law with a small exponent
cannot be well distinguished from a logarithmic behavior.
Therefore, we also fitted a logarithmic function

g(N) = α log(Nβ) . (10)

The quality of this fit was not good for the ∆tmax
90 data,

but worked well for specific values of λ, e.g., λ = λc
and is therefore included in Fig. 6. In the latter case the
obtained fit parameters are α = 25.3(6) and β = 0.39(6).
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FIG. 6. The time ∆t90 how long it takes until 90% of out-
breaks dynamics are finished as a function of the network size
N for the critical value λ = 0.1763. The lines show the results
of fits to f(n) and g(N).

VI. CUMULATIVE FRACTION C OF
INFECTIONS

Using the large-deviation approach, we now present the
result for the distribution of the fraction C of cumulative
infected nodes. Note that the study of the large devia-
tion refers to the dynamics on a given network. Since in
real-world situation the contact network is given, we do
not study rare-events with respect to rare networks here.
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First, we present results for the pdf of C. They were
obtained by using Wang-Landau, plus afterwards refin-
ing the result with entropic sampling. If necessary, i.e.,
in case we observed non-convergence, we applied REWL
instead.

The parameters we used for the simulations are pre-
sented in Tab. I, for the different networks sizes N and
values of the transmission probability λ. At the critical
point λ = λc, we studied also finite-size scaling by consid-
ering different network sizes. For the representative val-
ues smaller and larger than the critical transition, λ = 0.1
and λ = 0.4, respectively, we performed simulations only
for the largest system size N = 3200. Note that we used
a recovery probability of µ = 0.14 everywhere, which, as
a side note, is in the range of recovery probabilities used
to model the current corona virus pandemic [6, 12]. For
small sizes, we performed the full large-deviation sam-
pling for a small number #N of few independently drawn
networks, while for the largest sizes, where we assume
some kind of self-averaging, we studied only #N = 1 gen-
erated network. The latter case also corresponds some-
how to the real-life simulation, where only one contact
network is given, but the dynamics evolves randomly.

λ N approach #N #I B

0.1763 200 WL 15 24 75

0.1763 400 WL 7 24 150

0.1763 800 WL 4 24 166

0.1763 1600 WL 1 24 900

0.1763 3200 WL 1 24 2048

0.1763 6400 WL 1 48 3072

0.1 3200 WL 1 24 1024

0.4 3200 REWL 1 27 256

TABLE I. Parameters for the simulations: transmission prob-
ability λ, number of nodes N , the approach used, the number
#N of independent network realizations, the number #I of
intervals used in the WE or REWL sampling and the number
B of exchanges performed per MCMC attempt for the arrays
ξλ and ξmu of random numbers.

For the large-deviation simulation, we had to chose
a length tmax of the vector of random numbers, which
determines the maximum time duration of an outbreak
which can be covered. In theory, arbitrary long out-
breaks are possible, so one has to chose a longest time
anyway. We have chosen as maximum outbreak time
tmax = 3∆tmax

90 (N), the latter one as determined in
Sec. V B. To verify whether this is long enough, we
kept track during the large-deviation sampling how of-
ten the outbreak was not finished during the given time.
When considering all the different network sizes, trans-
mission probabilities and intervals of E ≡ C, the high-
est, i.e., worst-case frequency f6= of observing a non-
finished outbreak occurred for N = 2264 in the inter-
val of E ∈ [0.36, 0.44] with f 6= ≈ 4.9 × 10−4. Typically,
the frequency was much lower, e.g., the worst interval for
N = 6400 exhibited f6= ≈ 1.7×10−8. Since a non-finished

outbreak constitutes only few infected nodes anyway, this
shows that in order to observe extremely unlikely events
in terms of C, and clearly M anyway, one does not have
to cover extreme unlikely long durations of outbreaks and
our choice of tmax is sufficient.

In Fig. 7 the probability density P (C) is plotted for
different system sizes N . Note that here and in the fol-
lowing the pdfs P (E), where E can be either of C and
M , are always normalized such that

∫
E
P (E) = 1. Note

also that we sampled the histograms with the highest
possible resolution of one bin per possible value of C.
Whenever we averaged over different networks, we calcu-
lated the pdfs for each of them and then merged them by
averaging the logarithmic probabilities and normalizing
again.

We were able to measure the probability density over
the whole range of its support, extending over up to 115
decades in probability. To put that into perspective, for
N = 6400 we calculated C about 3.1 × 109 times, once
per MCMC attempt, during entropic sampling and WL
combined. That means, if we used typical event sampling
to create a histogram and estimate the probability den-
sity function with the same numerical effort, we would
only be able to resolve probabilities with a resolution of
about 10−9. To get the same results with typical event
sampling, one would need about 3× 10105 times as much
computational power as we used. The computational ad-
vantage would grow even higher for larger values of N .
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FIG. 7. Probability density of total infections C for µ =
0.14 and λ = 0.1763. Linear scale in inset. The largest and
smallest values of N are labeled, in between the values behave
monotonically, except for a small area around C = 0.8, where
the order is reversed (see inset). The used values were N ∈
{800, 1600, 3200, 6400}.

As visible by two peaks in the pdfs, the disease either
dies out very quickly, corresponding to the peak near
C = 1/N ≈ 0, or about 80% will contract the disease
over the evolution of the outbreak. Intuitively this makes
sense, as only one note is infected in the beginning, thus
the disease dies out if that node recovers before infect-
ing anyone. If the disease did not die out quickly on the
other hand, it will persist until a good fraction of the net-
work is immune. The observed behavior becomes more
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pronounced for larger networks, as visible by a decrease
of P (C) for intermediate values of C.

To relate to mathematical large-deviation theory, we
studied also the empirical rate functions, defined as

Φ (C,N) := − ln(P (C))

N
+ Φ0 (11)

where Φ0 = const = minC

(
− ln(P (C))

N

)
, such that the

minimum of the rate function occurs at Φ = 0. The
calculated rate functions are displayed in Fig. 8.
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FIG. 8. Rate function Φ as a function of total infections C for
different values of N . The smallest two and the biggest value
of N are labeled. In between, the values behave monotoni-
cally. The values N ∈ {200, 400, 800, 1600, 3200, 6400,∞} are
used, where the value for N = ∞ was gained by extrapolation
and all other values were measured.

Since an apparent convergence when increasing net-
work size N is visible, we also estimated the rate func-
tion for N =∞ with finite-size scaling, in a similar way
we did for extrapolating the disease duration in Sec. V B.
For this purpose we fit the function

h(N) := Φ∞ + ηN−κ (12)

for each value of C.
The errors of the fit are used as error bars and the

result is included in Fig. 8. The results show that the nu-
merically obtained rate function seems to converge well.
This means that the mathematical large-deviation prin-
ciple holds, i.e., the size dependence on N is in leading
order given by P (C) ∼ exp (−N(Φ(C)) + o(N)). As a
consequence of this “well behaving”, analytical progress
regarding P (C) might be feasible, e.g., through applica-
tion of the the Gärtner-Ellis theorem [37–40].

So far, we have considered only the critical point
λ ≈ λc. A comparison with the other values of the trans-
mission probability is shown in Fig. 9. As one would ex-
pect, higher values of λ lead to an increased probability
for larger values of C. Correspondingly, for the lower
transmission probability, lower values of C become far
more likely. Note that for all three considered values of
λ, we observe rather high probabilities for C ≈ 0, since

only one node is infected in the beginning. But this is
only an effect emerging from the initial condition and
can be ignored when discussing the main part of P (C).
Even if one started with a larger number of initially in-
fected nodes, this will only affect the height of the peak
for small values of C and the overal weight of the part
for C � 0, but not the shape.
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FIG. 9. Probability density of total infections C for µ = 0.14
and N = 3200 for different values of λ, below, at, and above
the critical threshold. Linear scale in inset.

A. Correlations

We want to further analysis the properties of typical
and atypical outbreaks to get to know better their struc-
ture and possibly to identify possible causes for extreme
events. For this purpose, we store during the entropic
sampling for each WL interval the C histogram 200 000
time evolutions of outbreaks, at steps evenly spaced out
in the entropic sampling Monte Carlo time. We store for
these time evolutions the fraction i of infected, the frac-
tion s of susceptible and the fraction c of the total frac-
tion of so-far infected nodes during the time evolution,
see Sec. II. Below T will denote either of these quantities
and we call

T = (T [0] , . . . , T [tmax − 1]) . (13)

a time series.
We bin each time series according to its energy E, i.e.,

C here, or M in Sec. VII. We denote by bE the set of a
number BE of time series collected for histogram bin E,
i.e.,

bE =
{
TE0 , . . . , T

E
BE−1

}
. (14)

As an example, in Fig. 10 we show a collection of time
series i(τ) for three different values of the cumulative
fraction C of infected individuals, for N = 3200 and λ =
λc. One can observe that the infection can last way longer
for medium values of C and dies out quicker for very large
or low values of C.
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FIG. 10. Fraction of infected nodes i as function of time τ
three different values of C. The plot on the left shows a single
time series for each C value as examples, whereas the plots
on the right each show 250 time series for their respective C
value.

In the next subsection, we use heat maps to inves-
tigate how similar the time series are when comparing
them pair-wise. Afterwards, we calculate other measur-
able quantities of the time series to relate them to the
values of C they exhibit, respectively.

1. Similarity heat maps

To measure how similar the time series are to each
other we first normalize each series by dividing through
its maximal value encountered during the outbreak. This
way we can better compare the shape of the time series
and are not comparing their magnitudes.

We define a distance d for two normalized time series
T, T ′ as

d(T, T ′) := t−1max

tmax−1∑
τ=0

|T [τ ]− T ′[τ ]| . (15)

We define the similarity VT (E,E′) between time series

from E and E′ as the averaged distance d
(
TEα , T

E′

β

)
for

pairs of time series taken from the bins E and E, re-
spectively. Here, we used 500 time series per bin, drawn
randomly from all saved time series that were collected
for the respective bin. Hence a total of up to 1 600 000
time series was used for each analysis.

In Fig. 11 we show the similarity Vi, for the fraction
of infected, for λ ≈ λc color-coded, i.e., in form of a
heat map. Note that we are able to show the similar-
ities over the full range of possible values for C, which
is only possible because we applied the large-deviation
approach. When using instead simple sampling, only a
very small range of values near C ≈ 0 and near C ≈ 0.8
would be accessible. Here we are able instead to identify

three different regions. The first is located in the range
0 ≤ C ≤ 0.1, the second is 0.1 < C ≤ 0.5 and the third
for C > 0.5. Region one and three seem to consist of
time series where the shapes are similar to each other,
within the region, visible by the bright color around the
diagonal in the heat map. But they are quite different
to other regions. Region two seems to consist of different
time series that are not even that similar to time series
from its own region, i.e., here we observe strong fluctua-
tions from time series to time series. Note that in Fig. 10
the time series were selected according these regions, and
thus illustrate their behaviors. Fig. 10 tells us that time
series for the first region exhibit only small fraction of in-
fected and the outbreak dies out quickly. For the second
region, we observe medium strong outbreaks, but they
may take very long and the shapes and durations fluctu-
ate strongly. For the third region, many individuals get
infected during the outbreak, leading to an even larger
fraction of individuals infected at the same time, and the
outbreak finished more quickly than in region two.

For λ = 0.1 the heatmap looks similar (not shown),
though now region 2 is shifted towards larger values of
C, i.e., the region is 0.15 < C ≤ 0.8, and the other regions
change accordingly.

For λ = 0.4 the heatmap also looks similar (not
shown). Here the second region is much smaller, i.e.
0.075 < C ≤ 0.21, and the other regions change accord-
ingly.
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FIG. 11. Similarity Vi of the time series i(τ) of the fraction
of infected individuals for pairs of time series binned with
respect to their total fraction C of infections of the pairs, for
N = 3200, µ = 0.14 and λ = 0.1763

In Fig. 12 we show the similarity heat map for the time
series of cumulative infections, i.e., Vc. This heat map ad-
umbrates the three regions as well, though they are much
less pronounced. Thus, to compare the dynamics of in-
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fections, the current fraction of infections allows for a
better insight compared to the cumulative fraction of in-
fections. For λ = 0.4 we see the same, though the region
borders changed, as mentioned previously. For λ = 0.1
the heat map also hints at the regions previously men-
tioned, however region 2 is very faint and barely visible.
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FIG. 12. Similarity Vc of the time series c(τ) of the fraction
of cumulative infections for pairs of time series binned with
respect to their total fraction C of infections for N = 3200,
µ = 0.14 and λ = 0.1763

2. Conditional density

In order to study the relation of other measurable prop-
erties Q of the time series to their values of C, we study
conditional densities. Again we bin each time series ac-
cording to its energy E, here E = C, (see Eq. (14)) and
obtain then a normalized histogram ρT (Q|E) of Q given
E. Again T will be either i, s, c, or omitted, if suitable.

For the measurable quantities Q we considered

• M as defined above, i.e., the maximum of the frac-
tion i of currently infected nodes during an out-
break;

• the time steps τmax until the maximal value of the
fraction i of infected is reached. This measures the
time scale it takes for an outbreak to reach is max-
imum activity. This is interesting for practical pur-
poses, as this would translate to the time where one
needs the maximal healthcare capacity.

• the time steps τmin until the minimal value of the
fraction s of susceptible nodes is reached. This
means, that after this time no additional nodes ob-
tained an infection, although it still takes some time

for the recovery of the infected nodes. This quan-
tity is a measure for the outbreak duration;

• the number of time steps τ9010 it took such that the
fractions i or c here, raised from 10% to 90% of
its maximal value, respectively. In the few cases
when for analysing i this occurred several times,
we considered the duration of the first occurrence.
These time scales quantify how long the outbreak
is very active;

• the fraction fsw of how many neighbors of an in-
fected node were infected through a long-range
edge, i.e., along those edges which were rewired
during graph generation. Hence

fsw =
1

N

∑
i,Ii>0

Li
Ii
, (16)

where Ii is the number of neighbors of node i in-
fected by node i and Li this number only for neigh-
bors connected through long-range edges.

In Fig. 13 we show the distribution ps(τmin|E) for the
time steps τmin it took until the minimum of susceptible
nodes was reached, conditioned to the value of C. As
one would expect, this distribution is centered at small
times for low values of C. For 0.25 ≤ C ≤ 0.5 the disease
survives the longest and exhibits the largest spread in
times scales. When increasing C further, the life time of
the disease decreases again. These results support the
insight gained for the different regions from looking at
the sample time series in Fig. 10.
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FIG. 13. Conditional density ρs (τmin|C), which shows the
probability of τmin, i.e., how many time steps it takes until
the last node got infected during an outbreak, for any given C.
The system size is N = 3200, the recover probability µ = 0.14
and the transmission probability λ = 0.1763.

For λ = 0.1 (not shown) the shape is similar, though
flatter and the range where the disease survives the
longest stretches now from 0.25 ≤ C ≤ 0.75. Also the
disease generally survives longer, because the pool of
susceptible nodes decreases more slowly. For λ = 0.4
(not shown) the shape looks even more similar to the
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one shown in Fig. 13, though the maximum is now more
pronounced and around C ≈ 0.13 and the disease dies
out even faster, because it rushes more quickly through
the population.

In Fig. 14 the conditional distribution pi(τmax|E) for
the time of the peak infection is shown. As one can see,
the shape is similar to the one from Fig. 13. From this
similarity one can conclude τmin ∼ τmax, i.e., the longer
the disease lasts, the later the peak of the fraction of
infected occurs. We found the same results for λ = 0.1
and λ = 0.4 (not shown).
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FIG. 14. Conditional density ρi (τmax|C), which shows the
probability of τmax, i.e., how many time steps it takes to reach
the peak of the infection time series i(τ), for any given value
of C. The system size is N = 3200, the recover probability
µ = 0.14 and the transmission probability λ = 0.1763

In Fig. 15 the conditional distribution pi(M |C) for the
maximum of nodes, which were in the infected state at
the same time, is shown. Here, the three regions, which
where visible in Figs. 13 and 14 are not apparent. Instead
one observes a generally monotonous relation between C
and the center of the distribution of M . Still, this is
compatible with the outbreak examples shown in Fig. 10.
The same behavior can be observed for λ = 0.1 (not
shown), though the peak value M is generally lower and
for λ = 0.4 (not shown), though the peak value is higher.

In Fig. 16 we show the conditional density ρi
(
τ9010 |C

)
for the duration of the most-active phase of the outbreak.
As one can see, the spread of the duration times is the
largest for region two, where the time series also looked
more chaotic (see Fig. 10 for T = i). If we look at the τ9010
for T = c (not shown) the plot looks quite similar, though
the durations are over all a bit longer. For λ = 0.1 the
heat map looks similar, but more like a half moon, and
the values scatter most around C ≈ 0.5. Also the values
overall are a bit higher. For λ = 0.4 the basic shape also
looks similar, but the slope is steeper at the beginning. It
also flattens out sharply at about C ≈ 0.5 at a relatively
small value. The values are lower overall compared to
the other two values of λ.

We are also interested in the effect of the long ranging
connections. For this we wanted to measure the fraction
of long ranging edges that caused an infection.
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FIG. 15. Conditional density ρi (M |C), which shows the prob-
ability of M , i.e., the maximum of the time series i(τ), for
any given value of C. The system size is N = 3200, the re-
cover probability µ = 0.14 and the transmission probability
λ = 0.1763.
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FIG. 16. Conditional density ρi
(
τ9010 |C

)
, which shows the

probability of τ9010 , i.e., the duration between reaching 10%
and 90% of the maximum of i(τ), for any given value of C.
The system size is N = 3200, the recover probability µ = 0.14
and the transmission probability λ = 0.1763.

In Fig. 17, we show the conditional distribution
ρ (fsw|C) of the fraction of infections through long-range
edges, i.e., those edges which are responsible for the
small-world behavior. For small values of C, the val-
ues of fsw scatter strongly, because here the disease dies
out very quickly and thus fsw is obtained by averaging
over only very few contagions. Overall we see a weak
correlation of C and fsw, where fsw increases slightly for
larger C until C ≈ 0.75. Thus, we see a weak effect that
in order to see a global pandemic, the spread has to go to
a slightly larger extend through long-range connections
and spreads a little bit less locally. This, even within
such a simple model, supports the often used real-word
strategy to suppress with higher priority long-distance
traveling. Interestingly, because this correlation is seen
also for rather large values of C, this would also help at
least a bit even if a pandemic has broken out already, not
only in an early stage to prevent pandemic outbreaks.
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On the other hand, to reach really all individuals, i.e.,
for even larger values of C, also many local edges have to
be involved since there are still many nodes which have
only local neighbors. This explains the decrease visible
for large values of C. We first suspected that the overall
weak correlation was due to our high probability p = 0.1
of rewiring, because of which here one third of the nodes
where adjacent to at least one long-range edge.
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FIG. 17. Conditional density ρ (fsw|C), which shows the prob-
ability of fsw for any given C. The system size is N = 3200,
the recover probability µ = 0.14 and the transmission proba-
bility λ = 0.1763

The plots for λ = 0.1 Fig. 18 and λ = 0.4 Fig. 19,
however, paint a different picture. For the transmission
probability (λ = 0.1) below the critical value, we ob-
serve an anti correlation between fsw and C, whereas
we observe a correlation for the transmission probabil-
ity (λ = 0.4) above the critical value. The latter was
what we expected, since the transmission via long rang-
ing edges infects more distant nodes, which can start new
infection clusters.
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FIG. 18. Conditional density ρ (fsw|C), which shows the prob-
ability of fsw for any given C. The system size is N = 3200,
the recover probability µ = 0.14 and the transmission proba-
bility λ = 0.1
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FIG. 19. Conditional density ρ (fsw|C), which shows the prob-
ability of fsw for any given C. The system size is N = 3200,
the recover probability µ = 0.14 and the transmission proba-
bility λ = 0.4

VII. MAXIMUM FRACTION M OF
CURRENTLY INFECTED

Next, we study the large-deviation properties with re-
spect to the maximum fraction M of simultaneously in-
fected nodes, in a similar way as we have done for C.
Although we have seen a strong relationship between C
and M in Fig. 15, we will show below that not all results
obtained for E = C transfer directly to the case E = M .
Note that for obtaining these results we had to perform
compleletly independent large-scale simulations with en-
ergy E = M in order the access also the outbreaks which
have a rare behavior with respect to M . For our largest
system size we evaluated M about 1010 times during en-
tropic sampling and Wang Landau combined, which is
thus the total number of local MC attempts.

In Fig. 20 the probability density P (M) is shown for
different system sizes N and λ = λc. Here, we never en-
countered an outbreak that lasted longer than our sim-
ulation time tmax. This means, we have chosen tmax

large enough to understand sufficiently the behavior of
M over the full range of possible values. Using the large
deviation approach we are able to measure probabilities
ranging over 2500 decades. Thus, if one were to sample
the same distribution using only a typical event sampling
approach, one would need at least 102490 times as much
computational power as we used, which is clearly infea-
sible.

The probability density function exhibits a peak at
M = 0 for the same reasons there is a peak at C = 0
for P (C). We also observe a peak at about M = 0.125.
This means, if the infection survives the first few steps
one can assume that typically about 12.5% of the net-
work will be infected at the same time at some point of
the outbreak. This determines the capacity of the health
care system to cope with typical outbreaks. If one wants
to be prepared for large atypical outbreaks, the tails be-
come important. Nevertheless, for substantially larger
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values of M the probability density becomes very small.
Unsurprisingly, the least likely case is that the entire net-
work is infected at the same time at some point of the
outbreak. Clearly, these extreme tails of the distribution
are not relevant for practical applications, but from a
fundamental and scientific viewpoint, it is pleasing to be
able to calculate the distribution of its full support.
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FIG. 20. Probability density of the maximum fraction M
of simultaneously infected for µ = 0.14 and λ = 0.1763 and
multiple system sizes N . Linear scale in inset.

In Fig. 21 the pdf is shown for different transmission
probabilities λ. Note the kink for λ = 0.4. We were only
able to resolve this interesting point where the distribu-
tion seems to be not differentiable by using the replica
exchange Wang-Landau algorithm here. Unsurprisingly,
larger transmission probabilities λ lead to an increase of
the probability to observe larger values of M . In contrast
to the pdf P (C), we only observe a peak at M = 0 for
λ = 0.1 while for the other two cases P (M) exhibits an
almost monotonically decreasing behavior near M = 0.
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FIG. 21. Probability density of the maximum fraction M
of simultaneously infected for µ = 0.14 and N = 3200 and
different λ. Linear scale in inset

In Fig. 22 we show the rate function as measured for
different system sizes. Clearly the rate functions all agree
very well, basically no finite-size effects are visible, in con-
trast for the case of P (C). This means we can use the

rate function to predict the pdf for any system size N .
We verified that by using the rate function calculated for
N = 3200 to accurately predict the pdf for N = 400 and
N = 2400. Thus, it was not necessary to perform any
extrapolation of the rate function. This means that also
for P (M) our numerical results indicate that the large-
deviation principle is fulfilled. Nevertheless, the kink vis-
ible for λ = 0.4 indicates that in the pandemic phase for
larger values of λ, the mathematical properties of the
rate function could pose some problems to an analytic
treatment.
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FIG. 22. Empirical rate function Φ(M) for multiple system
sizes N and µ = 0.14 and λ = 0.1763

A. Correlations

1. Similarity heat maps

Again we study the similarity of outbreaks, now for
pairs of times series of outbreaks classified according their
values of M , respectively. In Fig. 23 the similarity Vi for
the time series of the fraction of infected is shown, see
Sec. VI A 1. As in Fig. 11 we again see the three regions,
first for very small values 0 ≤M < 0.035, the second for
0.035 ≤ M < 0.08 and the third for M ≥ 0.08. Hence,
in contrast to the case of the cumulative fraction C of
infections, two of the three regions are visible on a much
smaller range of values. For λ = 0.1 the heat map (not
shown) looks quite similar, though the second region is
shifted towards even lower M . For λ = 0.4 the heat map
(not shown) also looks rather similar, though the second
region is shifted towards larger M .

Fig. 24 shows the similarity when comparing the time
series of the cumulative infections. It looks quite similar
to Fig. 23. This is also in contrast to the case of classi-
fying the outbreaks according C, where the two similar-
ity heat maps Vi and Vc appeared more different. For
λ ∈ {0.1, 0.4} the heat maps Vi and Vc (not shown) also
look alike.
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FIG. 23. Similarity Vi of the time series i(τ) of the fraction
of infected individuals for pairs of time series binned with
respect to their total fraction C of infections for N = 3200,
µ = 0.14 and λ = 0.1763
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2. Conditional density

Although we have already studied ρ(M |C), we show
in Fig. 25 the distribution ρ(C|M) of C conditioned to
the value of M . See Sec. VI A 2 for details. Note that
the non-zero values must be located above the diagonal,

because for every outbreak C ≥M holds by definition.

0 0.25 0.5 0.75 1

M

0.00

0.25

0.50

0.75

1.00

C

0.0

0.2

0.4

0.6

0.8

1.0

ρ (C|M)

FIG. 25. Conditional density ρ (C|M), which shows the prob-
ability of C, i.e., the total fraction of infections, for any given
M . The system size is N = 3200, the recover probability
µ = 0.14 and the transmission probability λ = 0.1763

In general, C and M still are monotonously related.
But one can see, there is a sharp increase of C right be-
tween regions two and three, near M ≈ 0.08. In this
small interval, outbreaks with relatively small as well
relatively large values of C lead to the same observed
maxima M . Thus, the change from region two to three
coincides with a strong change and large fluctuations,
similar to the behavior of physical phase transitions. It
also corresponds to the position of the kink in the pdfs
from Fig. 21. This difference shows that when biasing
with respect to M one analyses the behavior in a differ-
ent way than when biasing with respect to C as in the
previous section. The reason is that in fact there is an
underlying joint distribution P (C,M), but for sampling
this one even down to the tails, one would have to apply
a kind of two-dimensional rare-event sampling approach
which is currently out of reach for the present problem
and the considered graph sizes.

The observed behavior is even more pronounced for
λ = 0.4 (not shown). With respect to our algorithmic
approaches, we believe that these large fluctuations are a
reason that our initially applied standard Wang-Landau
approach did not converge and we had to use the replica
exchange algorithm.

On the other hand, for λ = 0.1 we do not see such a
jump and strong fluctuations in the conditional density
(plot not shown). Thus, in the non-pandemic phase, the
behavior seems to be simpler, even when including the
large-deviation behavior in the analysis.

In Fig. 26 we show for λ = λc the conditional distribu-
tion ρs(τmin|M) of the time scale τmin it takes until the
outbreak stops to grow, see Sec. VI A 2. Here we see a
sharp peak at the position M of the kink in P (M). This
is consistent with the above observations, where region
two was also associated with the longest outbreak du-
rations. Also, reaching heavy outbreaks in terms of the
fraction M of infections occurring at the same time, does
not at all coincide with long-lasting outbreaks, since most



15

of the figure exhibits a negative correlation. For λ = 0.4
the result (not shown) looks quite similar, though the
outbreak dies down quicker overall and the peak is shifted
a small bit to larger values of M . For λ = 0.1 the plot
(not shown) looks quit similar as well, though the peak
is shifted a small bit to smaller values of M .
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FIG. 26. Conditional density ρs (τmin|M), which shows the
probability of τmin, i.e., how many time steps it takes until
the last node is infected during an outbreak. The system
size is N = 3200, the recover probability µ = 0.14 and the
transmission probability λ = 0.1763

In Fig. 27 we show the conditional density ρi
(
τ9010 |M

)
for the duration τ9010 of the highest-activity outbreak
phase, see Sec. VI A 2. We can also see a peak which
corresponds to region two. Beyond the peak, τ9010 is neg-
atively correlated, which appears meaningful, since the
larger the peak of the infections in the epidemic phase,
the less time takes it for the outbreak to evolve. For
λ = 0.4 the plot (not shown) looks quite similar, though,
as one would expect, the durations are shorter over all.
For λ = 0.1 the plot (not shown) looks almost identical
to the plot for λ = 0.1763.
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FIG. 27. Conditional density ρi
(
τ9010 |M

)
, which shows the

probability of τ9010 , i.e., the duration between reaching 10%
and 90% of the maximum of i(τ), for any given value of M .
The system size is N = 3200, the recover probability µ = 0.14
and the transmission probability λ = 0.1763

The conditional density ρ (fsw|M) can be found in
Fig. 28. In contrast to the case when conditioning to C,
we see here a clear monotonous correlation: the higher
the maximum M of the i(τ) time series, the higher the
average fraction of infections which proceeded through
long-rang edges. This makes intuitively sense: As we
have seen in Fig. 27 and Fig. 26 a higher peak of i(τ), i.e.,
higher value of M , is correlated with faster outbreaks.
An infection via long-rang edges should accelerate global
spread and thus the infection process, leading to larger
values of M . The same can be observed for λ = 0.4 (not
shown). For λ = 0.1, however, we again see the anti cor-
relation we also observed when conditioning to C. Note
that we used the exact same graph for M and C for all
three λ values.
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FIG. 28. Conditional density ρ (fsw|M), which shows the
probability of fsw for any given M . The system size is
N = 3200, the recover probability µ = 0.14 and the trans-
mission probability λ = 0.1763

VIII. SUMMARY AND OUTLOOK

We investigated outbreaks dynamics for diseases de-
scribed by the standard SIR model. Our intention was to
investigate typical, extremely mild and extremely severe
outbreaks, in principle for arbitrary choices of the trans-
mission probability λ and recovery probabilityµ. Here
we considered a fixed value of µ and three representative
values of λ in the local-outbreak phase, in the pandemic
phase, and near the pandemic threshold λc, respectively.
To achieve this, we used large-deviation algorithms, in
particular a suitably adapted Wang-Landau approach.
We were able to numerically measure, by separate sets of
large-scale simulations, the pdfs of fraction C of cumu-
lative number of infected individuals and the peak value
M of the fraction of infected individuals over the whole
range of its support for multiple system sizes, respec-
tively. This allowed us to obtain results with probability
densities as small as 10−2500. Furthermore, we were able
to estimate the rate function for the distributions of these
quantities, showing that the results are compatible with
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the mathematical large-deviation property. This means
that the SIR process belongs to a mild or standard class
with respect to the large deviations, such that mathemat-
ical tools like the Gärtner-Ellis theorem might be utilized
to obtain analytical progress.

More specifically, we studied networks from the small-
world ensemble for various system sizes up to N = 6400
nodes. To gauge our simulations, we first performed stan-
dard SIR dynamics simulation, i.e., without the large-
deviation approach, to obtain the critical transmission
probability λc and investigated the disease duration ∆t90,
i.e., how long it takes until 90% of the outbreaks were fin-
ished.

Beyond obtaining the pdfs, by comparing the time se-
ries which are characteristic for different regions of the
pdfs, we were able to see three distinct types of out-
breaks. Very mild outbreaks (first region) as well as very
severe pandemic outbreaks (third region), with respect to
C or M or both, evolve very quickly. On the other hand,
the second region, for intermediate values of C and M ,
behaves somehow chaotic and here we observe the largest
times until the outbreaks die down.

In this study, we have investigated the most simple case
for the SIR model, with the intention to provide a case
study proving the feasibility of using large-deviation tech-
niques for epidemic simulations. Clearly, the approach
is not limited to the standard case. In the future we
plan, e.g., to investigate the effect of disease preventing
measures, like lock downs or government orders to wear
masks. This can be achieved technically by changing the
transmission probability dynamically during an outbreak

simulation. The time of change can be static or depend
on the outbreak dynamics. Any change of the outbreak
behavior will be visible in the measured pdfs, not only
in the typical part, but also in the tails, the structure of
the different outbreak dynamics and the measured cor-
relations. In a similar way, the effect of vaccinations can
in principle easily be measured.

Clearly, the large-deviation approach can be used also
for extensions of the SIR model, e.g., when other states
are introduced, like infected but not infectious or in quar-
antine, or for spatial models, where the mobility plays
a role. Within a longer perspective, this approach can
also be used to study the rare jump of, e.g., a virus be-
tween populations. This can be achieved by studying
two networks simultaneously, i.e., a multilevel network.
One network represents an animal population, while the
second one represents a human population. Usually the
probability of an animal infecting a human is substan-
tially smaller than the probability for human-human and
animal-animal infections. Thus, such a transfer leading
to a pandemic is a rare event for each single disease.
Hence, this case is ideally suited to be target by a large-
deviation approach.

ACKNOWLEDGMENTS

The simulations were performed at the HPC Clus-
ter CARL, located at the University of Oldenburg
(Germany) and funded by the DFG through its Ma-
jor Research Instrumentation Program (INST 184/157-1
FUGG) and the Ministry of Science and Culture (MWK)
of the Lower Saxony State. We also thank the GWDG
Göttingen for providing computational resources.

[1] H. W. Hethcote, SIAM Review 42, 599 (2000).
[2] H. Andersson and T. Britton, Stochastic Epidemic Mod-

els and Their Statistical Analysis (Springer-Verlag, New
York, 2000).

[3] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and
A. Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[4] C. E. Walters, M. M. Meslé, and I. M. Hall, Epidemics
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